Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
2.
Front Nutr ; 9: 961697, 2022.
Article in English | MEDLINE | ID: covidwho-1993808

ABSTRACT

Since 2019, the coronavirus disease (COVID-19) has caused 6,319,395 deaths worldwide. Although the COVID-19 vaccine is currently available, the latest variant of the virus, Omicron, spreads more easily than earlier strains, and its mortality rate is still high in patients with chronic diseases, especially cancer patients. So, identifying a novel compound for COVID-19 treatment could help reduce the lethal rate of the viral infection in patients with cancer. This study applied network pharmacology and systematic bioinformatics analysis to determine the possible use of curcumol for treating colon adenocarcinoma (COAD) in patients infected with COVID-19. Our results showed that COVID-19 and COAD in patients shared a cluster of genes commonly deregulated by curcumol. The clinical pathological analyses demonstrated that the expression of gamma-aminobutyric acid receptor subunit delta (GABRD) was associated with the patients' hazard ratio. More importantly, the high expression of GABRD was associated with poor survival rates and the late stages of COAD in patients. The network pharmacology result identified seven-core targets, including solute carrier family 6 member 3, gamma-aminobutyric acid receptor subunit pi, butyrylcholinesterase, cytochrome P450 3A4, 17-beta-hydroxysteroid dehydrogenase type 2, progesterone receptor, and GABRD of curcumol for treating patients with COVID-19 and COAD. The bioinformatic analysis further highlighted their importance in the biological processes and molecular functions in gland development, inflammation, retinol, and steroid metabolism. The findings of this study suggest that curcumol could be an alternative compound for treating patients with COVID-19 and COAD.

3.
Front Nutr ; 9: 870370, 2022.
Article in English | MEDLINE | ID: covidwho-1834490

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has led to 4,255,892 deaths worldwide. Although COVID-19 vaccines are available, mutant forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have reduced the effectiveness of vaccines. Patients with cancer are more vulnerable to COVID-19 than patients without cancer. Identification of new drugs to treat COVID-19 could reduce mortality rate, and traditional Chinese Medicine(TCM) has shown potential in COVID-19 treatment. In this study, we focused on lung adenocarcinoma (LUAD) patients with COVID-19. We aimed to investigate the use of curcumol, a TCM, to treat LUAD patients with COVID-19, using network pharmacology and systematic bioinformatics analysis. The results showed that LUAD and patients with COVID-19 share a cluster of common deregulated targets. The network pharmacology analysis identified seven core targets (namely, AURKA, CDK1, CCNB1, CCNB2, CCNE1, CCNE2, and TTK) of curcumol in patients with COVID-19 and LUAD. Clinicopathological analysis of these targets demonstrated that the expression of these targets is associated with poor patient survival rates. The bioinformatics analysis further highlighted the involvement of this target cluster in DNA damage response, chromosome stability, and pathogenesis of LUAD. More importantly, these targets influence cell-signaling associated with the Warburg effect, which supports SARS-CoV-2 replication and inflammatory response. Comparative transcriptomic analysis on in vitro LUAD cell further validated the effect of curcumol for treating LUAD through the control of cell cycle and DNA damage response. This study supports the earlier findings that curcumol is a potential treatment for patients with LUAD and COVID-19.

4.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
5.
Brief Bioinform ; 22(2): 1279-1290, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343635

ABSTRACT

OBJECTIVES: Patients with colorectal cancer (CRC) may be susceptible to the coronavirus disease-2019 (COVID-19). However, anti-CRC/COVID-19 treatment options are currently unavailable. Since niacin is a vitamin with cytoprotective and anti-inflammatory functions, this study aimed to evaluate the possible functional roles and underlying mechanisms of action of niacin as an anti-COVID-19 and -CRC therapy. INTERVENTIONS: We used a series of network pharmacology-based and computational analyses to understand and characterize the binding capacity, biological functions, pharmacological targets and therapeutic mechanisms of niacin in CRC/COVID-19. MEASUREMENTS AND MAIN RESULTS: We revealed the clinical characteristics of CRC patients and COVID-19 patients, including predisposing genes, survival rate and prognosis. Moreover, the results of molecular docking analysis indicated that niacin exerted effective binding capacity in COVID-19. Further, we disclosed the targets, biological functions and signaling pathways of niacin in CRC/COVID-19. The analysis indicated that niacin could help in treating CRC/COVID-19 through cytoprotection, enhancement of immunologic functions, inhibition of inflammatory reactions and regulation of cellular microenvironment. Furthermore, five core pharmacological targets of niacin in CRC/COVID-19 were also identified, including BCL2L1, PTGS2, IL1B, IFNG and SERPINE1. CONCLUSIONS: This study, for the first time, revealed the niacin-associated molecular functions and pharmacological targets for treating CRC/COVID-19, as COVID-19 remains a serious pandemic. But the findings were not validated in actual CRC patients infected with COVID-19, so further investigation is needed to confirm the potential use of niacin for treating CRC/COVID-19.


Subject(s)
COVID-19 Drug Treatment , Computational Biology , Niacin/therapeutic use , SARS-CoV-2/drug effects , Aged , COVID-19/virology , Colorectal Neoplasms/genetics , Female , Humans , Male , Middle Aged , Molecular Docking Simulation , Niacin/pharmacology
6.
Brief Bioinform ; 22(2): 1161-1174, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343620

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is a fatal and fast-spreading viral infection. To date, the number of COVID-19 patients worldwide has crossed over six million with over three hundred and seventy thousand deaths (according to the data from World Health Organization; updated on 2 June 2020). Although COVID-19 can be rapidly diagnosed, efficient clinical treatment of COVID-19 remains unavailable, resulting in high fatality. Some clinical trials have identified vitamin C (VC) as a potent compound pneumonia management. In addition, glycyrrhizic acid (GA) is clinically as an anti-inflammatory medicine against pneumonia-induced inflammatory stress. We hypothesized that the combination of VC and GA is a potential option for treating COVID-19. METHODS: The aim of this study was to determine pharmacological targets and molecular mechanisms of VC + GA treatment for COVID-19, using bioinformational network pharmacology. RESULTS: We uncovered optimal targets, biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of VC + GA against COVID-19. Our findings suggested that combinatorial VC and GA treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including activation of the T cell receptor signaling pathway, regulation of Fc gamma R-mediated phagocytosis, ErbB signaling pathway and vascular endothelial growth factor signaling pathway. We also identified 17 core targets of VC + GA, which suggest as antimicrobial function. CONCLUSIONS: For the first time, our study uncovered the pharmacological mechanism underlying combined VC and GA treatment for COVID-19. These results should benefit efforts to address the most pressing problem currently facing the world.


Subject(s)
Ascorbic Acid/administration & dosage , Computational Biology , Glycyrrhizic Acid/administration & dosage , Ascorbic Acid/therapeutic use , Drug Therapy, Combination , Glycyrrhizic Acid/therapeutic use , Humans , COVID-19 Drug Treatment
7.
Aging (Albany NY) ; 13(12): 15785-15800, 2021 06 27.
Article in English | MEDLINE | ID: covidwho-1285613

ABSTRACT

Recent reports indicate that patients with hepatocholangiocarcinoma (CHOL) have a higher morbidity and mortality rate for coronavirus disease (COVID-19). Anti-CHOL/COVID-19 medicines are inexistent. Vitamin A (VA) refers to a potent nutrient with anti-cytotoxic and anti-inflammatory actions. Therefore, this study aimed to determine the potential functions and molecular mechanisms of VA as a potential treatment for patients with both CHOL and COVID-19 (CHOL/COVID-19). The transcriptome data of CHOL patients were obtained from the Cancer Genome Analysis database. Furthermore, the network pharmacology approach and bioinformatics analysis were used to identify and reveal the molecular functions, therapeutic biotargets, and signaling of VA against CHOL/COVID-19. First, clinical findings identified the medical characteristics of CHOL patients with COVID-19, such as susceptibility gene, prognosis, recurrence, and survival rate. Anti-viral and anti-inflammatory pathways, and immunopotentiation were found as potential targets of VA against CHOL/COVID-19. These findings illustrated that VA may contribute to the clinical management of CHOL/COVID-19 achieved by induction of cell repair, suppression of oxidative stress and inflammatory reaction, and amelioration of immunity. Nine vital therapeutic targets (BRD2, NOS2, GPT, MAPK1, CXCR3, ICAM1, CDK4, CAT, and TMPRSS13) of VA against CHOL/COVID-19 were identified. For the first time, the potential pharmacological biotargets, function, and mechanism of action of VA in CHOL/COVID-19 were elucidated.


Subject(s)
COVID-19 Drug Treatment , Immunity/drug effects , SARS-CoV-2/drug effects , Vitamin A/pharmacology , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Computational Biology , Female , Humans , Inflammation/drug therapy , Inflammation/etiology , Liver Neoplasms/genetics , Male , Molecular Docking Simulation , Proportional Hazards Models , Signal Transduction/drug effects
8.
Aging (Albany NY) ; 12(15): 15784-15796, 2020 08 15.
Article in English | MEDLINE | ID: covidwho-721666

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an epidemic disease characterized by rapid infection and a high death toll. The clinical diagnosis of patients with COVID-19 has risen sharply, especially in Western countries. Globally, an effective treatment for COVID-19 is still limited. Vitamin A (VA) exhibits pharmacological activity in the management of pneumonia. Thus, we reason that VA may potentially serve as an anti-SARS-CoV-2 regimen. In this study, bioinformatics analysis and computation assays using a network pharmacology method were conducted to explore and uncover the therapeutic targets and mechanisms of VA for treating COVID-19. We identified candidate targets, pharmacological functions, and therapeutic pathways of VA against SARS-CoV-2. Bioinformatics findings indicate that the mechanisms of action of VA against SARS-CoV-2 include enrichment of immunoreaction, inhibition of inflammatory reaction, and biological processes related to reactive oxygen species. Furthermore, seven core targets of VA against COVID-19, including MAPK1, IL10, EGFR, ICAM1, MAPK14, CAT, and PRKCB were identified. With this bioinformatics-based report, we reveal, for the first time, the anti-SARS-CoV-2 functions and mechanisms of VA and suggest that VA may act as a potent treatment option for COVID-19, a deadly global epidemic.


Subject(s)
Betacoronavirus , Coronavirus Infections , Immunity/drug effects , Inflammation , Pandemics , Pneumonia, Viral , Vitamin A , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/physiology , Biological Availability , COVID-19 , Computational Biology/methods , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Gene Ontology , Humans , Inflammation/drug therapy , Inflammation/etiology , Inflammation/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Signal Transduction/drug effects , Vitamin A/pharmacokinetics , Vitamin A/therapeutic use , Vitamins/pharmacokinetics , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL